#grayscale");filter:gray;-webkit-filter:grayscale(100%);}.bk-root .bk-logo-small{width:20px;height:20px;background-image:url();}.bk-root .bk-logo-notebook{display:inline-block;vertical-align:middle;margin-right:5px;}.rendered_html .bk-root .bk-tooltip table,.rendered_html .bk-root .bk-tooltip tr,.rendered_html .bk-root .bk-tooltip th,.rendered_html .bk-root .bk-tooltip td{border:none;padding:1px;}
Pokemon Data - KMeans Clustering
packages = [
"altair",
"numpy",
"pandas",
"scikit-learn",
"panel==0.13.1"
]
import altair as alt
import panel as pn
import pandas as pd
from sklearn.cluster import KMeans
from pyodide.http import open_url
pn.config.sizing_mode = 'stretch_width'
url = 'https://raw.githubusercontent.com/ranran1212/pyscript_pokemon/main/pokemon.csv'
penguins = pd.read_csv(open_url(url)).dropna()
cols = list(penguins.columns)[3:8]
x = pn.widgets.Select(name='x', options=cols, value='こうげき').servable(target='x-widget')
y = pn.widgets.Select(name='y', options=cols, value='ぼうぎょ').servable(target='y-widget')
n_clusters = pn.widgets.IntSlider(name='クラスタ数', start=1, end=5, value=3).servable(target='n-widget')
brush = alt.selection_interval(name='brush') # selection of type "interval"
def get_clusters(n_clusters):
kmeans = KMeans(n_clusters=n_clusters)
est = kmeans.fit(penguins[cols].values)
df = penguins.copy()
df['クラスタ'] = est.labels_.astype('str')
return df
def get_chart(x, y, df):
centers = df.groupby('クラスタ').mean()
return (
alt.Chart(df)
.mark_point(size=100)
.encode(
x=alt.X(x, scale=alt.Scale(zero=False)),
y=alt.Y(y, scale=alt.Scale(zero=False)),
color=alt.Color('タイプ1', legend=alt.Legend(orient="right",direction="vertical")),
shape=alt.Color('タイプ2', legend=alt.Legend(orient="right",direction="vertical")),
tooltip=['No','名前','タイプ1','タイプ2','クラスタ']
).add_selection(brush).properties(width=800,height=600) +
alt.Chart(centers)
.mark_point(size=250, shape='cross', color='black')
.encode(x=x+':Q', y=y+':Q')
)
chart = pn.pane.Vega().servable(target='cluster-plot')
table = pn.widgets.Tabulator(pagination='remote', page_size=25).servable(target='table')
def update_table(event=None):
table.value = get_clusters(n_clusters.value)
n_clusters.param.watch(update_table, 'value')
@pn.depends(x, y, n_clusters, watch=True)
def update_chart(*events):
chart.object = get_chart(x.value, y.value, table.value)
chart.selection.param.watch(update_filters, 'brush')
def update_filters(event=None):
filters = []
for k, v in (getattr(event, 'new') or {}).items():
filters.append(dict(field=k, type='>=', value=v[0]))
filters.append(dict(field=k, type='<=', value=v[1]))
table.filters = filters
update_table()
update_chart()